Cell-specific basolateral membrane sorting of the human liver Na(+)-dependent bile acid cotransporter.
نویسندگان
چکیده
The human Na(+)-taurocholate cotransporting polypeptide (Ntcp) is located exclusively on the basolateral membrane of hepatocyte, but the mechanisms underlying its membrane sorting domain have not been fully elucidated. In the present study, a green fluorescent protein-fused human NTCP (NTCP-GFP) was constructed using the polymerase chain reaction and was stably transfected into Madin-Darby canine kidney (MDCK) and Caco-2 cells. Taurocholate uptake studies and confocal microscopy demonstrated that the polarity of basolateral surface expression of NTCP-GFP was maintained in MDCK cells but was lost in Caco-2 cells. Nocodazole (33 microM), an agent that causes microtubular depolymerization, partially disrupted the basolateral localization of NTCP-GFP by increasing apical surface expression to 33.5% compared with untreated cells (P < 0.05). Brefeldin A (BFA; 1-2 microM) disrupted the polarized basolateral localization of NTCP, but monensin (1.4 microM) had no affect on NTCP-GFP localization. In addition, low-temperature shift (20 degrees C) did not affect the polarized basolateral surface sorting of NTCP-GFP and repolarization of this protein after BFA interruption. In summary, these data suggest that the polarized basolateral localization of human NTCP is cell specific and is mediated by a novel sorting pathway that is BFA sensitive and monensin and low-temperature shift insensitive. The process may also involve microtubule motors.
منابع مشابه
Expression of the hepatocyte Na+/bile acid cotransporter in Xenopus laevis oocytes.
The expression of the basolateral Na+/bile acid (taurocholate) cotransport system of rat hepatocytes has been studied in Xenopus laevis oocytes. Injection of rat liver poly(A)+ RNA into the oocytes resulted in the functional expression of Na+ gradient stimulated taurocholate uptake within 3-5 days. This Na(+)-dependent portion of taurocholate uptake exhibited saturation kinetics (apparent Km ap...
متن کاملExpression and transport properties of the human ileal and renal sodium-dependent bile acid transporter.
The enterohepatic circulation of bile acids is maintained by Na+-dependent transport mechanisms. To better understand these processes, a full-length human ileal Na+-bile acid cotransporter cDNA was identified using rapid amplification of cDNA ends and genomic cloning techniques. Using Northern blot analysis to determine its tissue expression, we readily detected the ileal Na+-bile acid cotransp...
متن کاملEthinylestradiol treatment induces multiple canalicular membrane transport alterations in rat liver.
We investigated the effects of 17 alpha-ethinylestradiol treatment of rats on various transport functions in isolated basolateral and canalicular liver plasma membrane vesicles. Both membrane subfractions were purified to a similar degree from control and cholestatic livers. Although moderate membrane lipid alterations were predominantly observed in basolateral vesicles, no change in basolatera...
متن کاملSorting of rat liver and ileal sodium-dependent bile acid transporters in polarized epithelial cells.
The rat ileal apical Na+-dependent bile acid transporter (ASBT) and the liver Na+-taurocholate cotransporting polypeptide (Ntcp) are members of a new family of anion transporters. These transport proteins share limited sequence homology and almost identical predicted secondary structures but are localized to the apical surface of ileal enterocytes and the sinusoidal surface of hepatocytes, resp...
متن کاملExpression and localization of rat NBC4c in liver and renal uroepithelium.
Previous studies provided functional evidence for electrogenic Na(+)-HCO(3)(-) cotransport in hepatocytes and in intrahepatic bile duct cholangiocytes. The molecular identity of the transporters mediating electrogenic sodium-bicarbonate cotransport in the liver is currently unknown. Of the known electrogenic Na(+)-HCO(3)(-) cotransporters (NBC1 and NBC4), we previously showed that NBC4 mRNA is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 280 6 شماره
صفحات -
تاریخ انتشار 2001